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ABSTRACT 

 

 In this work we tackled an optimal investment strategy problem of an insurance investor, who had 

logarithmic utility preference and invested in two assets ;( i) a riskless bond with a constant rate of return 

and (ii) a risky asset (stock) whose price dynamics followed modified constant elasticity of variance (M-

CEV) model. We focused on getting an optimal investment strategy that will maximize his returns and pays 

policy holders their claims whenever they occur. We derived formulae that allowed us to analyze the impact 

of the models parameters of the coefficient of correlation of the Brownian motions and transaction cost. It 

was found, among others, that if the Brownian motions increase or decrease together the investor will need 

less funds to be in business than when the Brownian motions do not increase or decrease together 

Keywords:  effects of transaction cost, insurer, logarithmic utility function, modified constant elasticity of 

variance  (M-CEV) model, optimal portfolio strategy 
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INTRODUCTION 

Optimal portfolio problem is of practical importance in finance and insurance mathematics. These 

days, insurance companies invest both in the money market and stocks. Due to the high risks 

involved in the stock market, investment strategies and risk management are becoming more 

important. 

Most of the studies and insurance mathematics have focused on finding optimal investment 

strategies that minimized the probability of ruin when the risk process of an insurance company 
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follows the Cramar-Lundberg model, however, this does not come as easily as it presents difficult 

numerical computations of the ruin probability. 

 

 

In this work therefore, we intend to study the risk process of insurance company that follows 

Modified constant of elasticity (MCEV) model. We take this approach because we viewed that 

analytical solutions can be obtain with less difficulty. The company is expected to invest in two 

assets; a risk-free bond having a constant rate of return and a risky asset (stock) whose price 

dynamics follows Modified Constant Elasticity of variance model. The investment strategy will 

help in deciding how the investor should invest in both assets (the risk-free bond and the risky 

stock) subject to paying policy holders their claims.  

 

REVIEW OF RELATED LITERATURE 

 

In order to achieve this objective some works done in this area were reviewed and the contributions 

were penciled down in the sequel.   

Bayraktar (2009) worked on a problem Involving individual consumers and especially 

beneficiaries of endowments funds who generally employ strategies such that consumption never 

decreases (Ratcheted) or at least they try to do this. They assumed that an agent’s rate of 

consumption is ratcheted that is it forms a non-decreasing process. They found that the agents 

invests in a financial market with one risk-less asset and one risky asset with the latter’s price 

following geometric Brownian motion as in Black schools model given the rate of consumption 

of the agent, they act as financial advisers and find optimal investment strategies for the agent who 

wishes to minimize his/her probability of running out of money either before dying or before the 

organization holding the endowment fails due to causes other than the ruin of the fund itself. They 

solved this minimization problem using stochastic optimal control techniques. 

Qian and Lin (2009) considered an insurance company whose surplus (reverse) is modeled by a 

jump diffusion risk process. The insurance company can invest part of its surplus in risky assets 

and purchase a proportional reinsurance for claims. 

Their main goal is to find an optimal investment and proportional reinsurance policy which 

minimizes ruin probability. They apply stochastic control theory to solve the problem. They 

obtained close form expression for the minimum probability, optimal investment and proportional 

reinsurance policy. They found out that the minimum ruin probability satisfies the Lundberg 

equality. They also investigated the diffusion volatility parameter. The market price of risk and the 

correlation coefficient on the minimal ruin probability, optimal investment and proportional 

reinsurance policy through numerical calculations. 

Azcue et al (2009) considered that the reserve of an insurance company follows a Cramer-

Lungberg process. They considered that the management of an insurance company had the 

possibility of investing part of the reserve in a risky asset. They considered that the risky asset was 

a stock as it is with most of the rest of the studies whose price process was a geometric Brownian 
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motion. Their main aim was to find a dynamic choice of investment policy which would minimize 

the ruin probability of the insurance company. They imposed that the proportion of the reserve 

invested in the risky asset was to be smaller than a given positive bound for instance the case a=1 

meant that the company could not borrow money to buy stocks. 

They characterized the optimal value function as the classical solution of the associated Hamilton-

Jacobi-Bellman equation which was a non-linear second order integro-differential equation.  

Jung (2012) “Optimal investment strategies for the HARA utility under the constant elasticity of 

variance model”, gave an explicit expression for the optimal investment strategy, under the 

constant elasticity of variance model, which maximizes the expected HARA utility of the final 

value of the surplus at the maturity time. To do this, the corresponding HJB equation was 

transformed into a linear partial differential equation by applying a Legendre transform and proved 

that the optimal investment strategy corresponding to the HARA utility function converges as to 

the one corresponding to the exponential utility function. 

Zhao and Rong (2012) "Portfolio selection problem with multiple risky assets under the constant 

elasticity of variance model," their work focuses on the constant elasticity of variance model for 

studying the utility maximization portfolio selection problem with multiple risky assets and a risk-

free asset. The Hamilton–Jacobi–Bellman (HJB) equation associated with the portfolio 

optimization problem is established. By applying a power transform and a variable change 

technique, they derive the explicit solution for the constant absolute risk aversion (CARA) utility 

function when the elasticity coefficient is −1 or 0. In order to obtain a general optimal strategy for 

all values of the elasticity coefficient, they propose a model with two risky assets and one risk-free 

asset and solve it under a given assumption. Furthermore, they analyzed the properties of the 

optimal strategies and discuss the effects of market parameters on the optimal strategies. Finally, 

they presented a numerical simulation to illustrate the similarities and differences between the 

results of the two models proposed in their work. 

Ihedioha (2014) worked on a problem on how to take the risk reserve of an insurance company to 

follow Brownian motion with drift and tackle an optimal portfolio selection problem of the 

company. The investment case considered was insurance company that trades two assets; the 

money market account (bond) growing at a rate “r” and a risky stock with investment behavior in 

the pressure of a stochastic cash flow or a risk process continuously in the economy. His focus was 

on obtaining investment strategies that are optimal in the sense of optimizing the returns of the 

company. He established among others that the optimized investment is the assets and the optimal 

value functions are dependent on horizon and the wealth. 

Muravey (2018) work on optimal investment problem under modified constant elasticity of 

variance (M-CEV) model for the assets price and power utility over the final wealth for a finite 

horizon agent. This model was introduced in Health and Platen (2002) and is a natural extension 

of the famous CEV model.  

From the discussions above, we note that the risk process of an insurance company in most of the 

papers is modeled by the Cramer-Lundberg model while investment is done with either two assets 

or with a single asset and reinsurance hence our choice. 
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METHODOLOGY 

In this section, we explain some concepts that we hope will make clear our discussion. We give 

brief notes on the following: Brownian motion, Geometric Brownian motion, Modified-constant 

elasticity of variance, Ito’s lemma and formulate the insurance investor’s investment problem.  

Brownian motion 

The Brownian motion was developed to explain the random movement seen in suspended particles 

but is used to explain market fluctuations and stock market trading today. Brownian motion is a 

continuous time stochastic process (Wiener process) named in honor of Norbert Wiener and is 

characterized by the following four facts: 

(i). 𝑍0   =    0. (ii). 𝑍1 is almost surely continuous. (iii).𝑍𝑡  has independent increments. (iv). 𝑍𝑡 – 

𝑍𝑠 ~𝑁(0, 𝑡 − 𝑠) (for 0 ≤ 𝑠 ≤ 𝑡).  

𝑁(𝜇, 𝛿2) denotes the normal distribution with the expected value 𝜇 and variance 𝛿2. The condition 

that it has independent increment means that if 0 ≤ 𝑠1 ≤ 𝑡1 ≤ 𝑠2 ≤ 𝑡2 then 𝑍𝑡1
− 𝑍𝑠2

 are 

independent random variables. 

The Geometric Brownian motion (GBM) (also known as Exponential Brownian motion) 

GBM is a continuous – time stochastic process in which the logarithm of the randomly varying 

quantity follows a Brownian motion with drift. It is an important example of stochastic process 

satisfying a stochastic differential equation (SDE). In particular, it is used in mathematical finance 

to model stock prices in the Black – Scholes model. 

A stochastic process 𝑆(𝑡) is said to follow GBM if it satisfies the following stochastic differential 

equation (SDE): 
𝑑𝑆(𝑡)

𝑆(𝑡)
= 𝜇𝑑𝑡 + 𝛿𝑑𝑍(𝑡), where 𝑍(𝑡) is a standard Brownian motion, 𝜇 is the 

appreciation rate and 𝛿 the volatility, are constants. 

Constant Elasticity of Variance Model (CEV) 

The Constant Elasticity of Variance (CEV) model is a stochastic volatility model, which generally 

has negative correlation between an asset return and its changes of volatility. The model was 

introduced by John Cox (1975) as one of the early alternatives to the geometric Brownian motion 

to model asset price process. The CEV model describes a process which evolves according to the 

following stochastic differential equation: 
𝑑𝑆(𝑡)

𝑆(𝑡)
= 𝜇𝑑𝑡 + 𝛿𝑆𝛾(𝑡) 𝑑𝑍(𝑡), where 𝜇 and  𝛿 are 

constant parameters which satisfy the condition 𝜇 ≥ 0, 𝛿 ≥ 0. The parameter  𝛾 controls the 

relationship between volatility and price of the risky asset and is a central feature of the model. If 

𝛾 < 1, we see the so-called leverage effect, commonly observed in equity markets where the 

volatility of a stock increases as its price falls. 

Conversely, when  𝛾 > 1, we obtain the so-called inverse leverage effect in a commodity market 

whereby the volatility of the price of a commodity tends to increase as its price increases. 

Modified Constant Elasticity of Variance (M-CEV) 
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Consider a simple market consisting of a risk-free bond which price we shall denote by  𝐵(𝑡) and 

a risky asset (stock) with price 𝑆(𝑡) at time 𝑡. The bond and stock prices are driven by the 

differential equation 

 𝑑𝐵(𝑡)  =  𝑟(𝑡)𝐵(𝑡)𝑑𝑡;         𝐵(𝑡)  =  𝐵 >  0;  

for the risk-free asset and the stochastic differential equation (SDE) 
𝑑𝑆(𝑡)

𝑆(𝑡)
=  [𝑟(𝑡) −  𝑞(𝑡) +  𝜆(𝑆(𝑡), 𝑡)]𝑑𝑡 +  𝜎(𝑆(𝑡), 𝑡)𝑑𝑍(𝑡) ; 𝑆(𝑡) = 𝑆 > 0; 

where 𝑍(𝑡) is a standard Wiener process, 𝑟(𝑡) ≥  0,   𝑞(𝑡) ≥  0, 𝜎(𝑆, 𝑡) >  0 and 𝜆(𝑆, 𝑡)  ≥  0 are 

the time-dependent risk-free interest rate, the time-dependent dividend yield, the time and state-

dependent instantaneous stock volatility, and the time-and state-dependent default intensity, 

respectively. The M-CEV model has the following specifications:  

 𝜎(𝑆(𝑡), 𝑡) =  𝑎𝑆𝛾(𝑡), 𝜆(𝑆(𝑡), 𝑡) =  𝑏 +  𝑐𝜎2 (𝑆(𝑡), 𝑡) =  𝑏 𝑐𝑎2 𝑆2𝛾(𝑡), 𝑞(𝑡) = 𝑞, 𝑟(𝑡) =  𝑟 ;         

𝛼 =  𝑟 −  𝑞 +  𝑏; and defined by this corresponding SDE; 
𝑑𝑆(𝑡)

𝑆(𝑡)
= [𝛼 +  𝑐𝑎2𝑆2𝛾]𝑑𝑡 +

 𝑎𝑆𝛾𝑑𝑊(𝑡). 

Heath and Platen (2002) considered model above with 𝑐 = 1. The case of 𝑐 ≠  1 is not an 

extension of original M-CEV model because this case can be reduced to the original model by a 

simple change of measure. 

Ito’s lemma 

Recall from Taylors series;𝑓(𝑥) = 𝑓(0) + 𝑓 ′(0)𝑥 +
𝑓′′(0)

2!
𝑥2 +

𝑓′′′(0)

3!
𝑥3 + ⋯      

This defines the case of one variable. 

Now we consider the second dimension case of two variables thus: 

                             f(a, b) = 𝑓(0,0) + 𝑓𝑎(0,0)𝑎 + 𝑓𝑏(0,0)𝑏 +
faa(0,0)

2!
𝑎2 +

𝑓𝑏𝑏(0,0)

2!
𝑏2 + (0,0) + ⋯ 

We note that  

                                 𝑓𝑎𝑏 = 𝑓𝑏𝑎.         

From the above equation we get: 

                                  𝑓(𝑎, 𝑏) = 𝑓(0,0) +  𝑓𝑎. 𝑎 +  𝑓𝑏. 𝑏 +
𝑓𝑎𝑎

2!
 . 𝑎2 +

𝑓𝑏𝑏

2!
. 𝑏2 +  𝑓𝑎𝑏. 𝑎𝑏 + ⋯   (**)  

and 

                           𝑑𝑓(𝑡, 𝑋𝑡) =
𝜕𝑓

𝜕𝑡
. 𝑑𝑡 +

𝜕𝑓

𝜕𝑥
𝑑𝑋(𝑡) +

1

2

𝜕2𝑣

𝜕𝑤2 (𝑑𝑋(𝑡))2 +
𝜕2𝑓

𝑑𝑡𝑑𝑥
. 𝑑𝑡. 𝑑𝑋(𝑡) + ⋯ 

Using the Hint that   

                               𝑑𝑡𝑑𝑡 = 𝑑𝑋(𝑡)𝑑𝑡 = 𝑑𝑡 𝑑𝑋(𝑡) = 0,  𝑑𝑋(𝑡) 𝑑𝑋(𝑡) = 𝑑𝑡,  

then  

                                          𝑑𝑓(𝑡, 𝑋(𝑡)) =
𝜕𝑓

𝜕𝑡
. 𝑑𝑡 +

𝜕𝑓

𝜕𝑥
. 𝑑𝑋(𝑡) +

1

2

𝜕2𝑓

𝜕𝑥2 (𝑑𝑋(𝑡))2 …                       

Now comparing  𝑑𝑓(𝑡, 𝑋(𝑡))with the function 𝑑𝑉(𝑡, 𝑤(𝑡)), we obtain the Ito’s lemma, 

                                         𝑑𝑉(𝑡, 𝑊(𝑡)) =
𝜕𝑉

𝜕𝑡
. 𝑑𝑡 +

𝜕𝑉

𝜕𝑊
. 𝑑𝑊(𝑡) +

1

2

𝜕2𝑉

𝜕𝑊2 (𝑑𝑊(𝑡))2. 

Model Formulation 
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We adapt the formulation of Osu et al (2014). The insurance investor trades two assets, a bond and 

a stock, continuously in the economy where the first asset is the money market account (bond) 

growing at a rate,  𝑟. The equation governing the dynamics of the money market account (bond) 

is given as 

                  𝑑𝐵(𝑡) = 𝑟𝐵(𝑡).                                                                                            (1) 

We assume that the risky stock available for investment has the price 𝑆(𝑡) at time 𝑡 is driven by 

Modified Constant Elasticity of Variance (M-CEV). 

                 𝑑𝑆(𝑡) = 𝑆(𝑡)[𝑟(𝑡) − 𝑞(𝑡) + 𝜆(𝑠, 𝑡)] + 𝛿(𝑠, 𝑡) 𝑑𝑍(2)(𝑡)                      (2) 

where, 𝑍(2)(𝑡)is a standard Wiener process, 𝛿(𝑠, 𝑡) is the time–and state dependent instantaneous 

stock volatility, 𝜆(𝑠, 𝑡) is the time – and state – dependent default intensity, 𝑟(𝑡) the time – 

dependent risk – free interest rate, 𝑞(𝑡) the time – dependent dividend yield. 

Using the following specifications of the M-CEV model  

𝛿(𝑠, 𝑡) = 𝑎𝑆𝛾, 𝜆(𝑠, 𝑡) = 𝑏 + 𝑐𝑎2(𝑠, 𝑡) = 𝑏 + 𝑐𝑎2(𝑠, 𝑡) = 𝑏 + 𝑐𝑎2𝑆2𝛾, 𝑞(𝑡) = 𝑞, 𝑟(𝑡) = 𝑟,    𝛼 =

𝑟 − 𝑞 + 𝑏, we have the correspond stochastic differential equation (SDE) 

                   𝑑𝑆(𝑡) = 𝑆(𝑡)[𝛼 + 𝑐𝑎2𝑆2𝛾]𝑑𝑡 + 𝑎𝑆𝛾𝑑𝑍2(𝑡)            (3) 

where 𝛼 is the appreciation rate of the risky asset, 𝛾 is the elasticity parameter of the local volatility, 

𝑐 is the local volatility scale parameter, 𝑑𝑍(2)(𝑡) is standard Brownian motion parameter. 

This work concerns an investment behavior in the presence of stochastic cash flow or a risk process 

which we will denote by 𝑅(𝑡) and satisfies the stochastic differential equation (SDE). 

                     𝑑𝑅(𝑡) = ∅𝑑𝑡 + 𝛽𝑑𝑍(1)(𝑡)       (4) 

where ∅ and 𝛽 are constants with 𝛽 ≥ 0. We also allow the two Brownian motions 𝑍1 and 𝑍2 to 

correlate with correlation coefficient 𝜌.. That is 𝐸(𝑍1𝑍2) = 𝜌. 

Let  𝑊(𝑡) be the total wealth the insurance investor has for investment and is allocated as follows:  

𝜋(𝑡) be the total amount of the insurance investor’s wealth that is invested in risky assets. The 

remaining balance (𝑊(𝑡) − 𝜋(𝑡)) is invested in a risk – less asset (bond/market). 

The wealth process of the insurance investor evolves according to the stochastic differential 

equations (SDE). 

1. The Case of no transaction cost 

When there is no transaction cost and the Brownian motions correlate, the wealth process of the 

insurance investor evolves according to the stochastic differential equations (SDE)                

                   𝑑𝑊𝜋(𝑡) = 𝜋(𝑡)
𝑑𝑠(𝑡)

𝑠(𝑡)
+ [𝑊(𝑡) − 𝜋(𝑡)]

𝑑𝐵(𝑡)

𝐵(𝑡)
+ 𝑑𝑅(𝑡).                                        (5) 

Applying equation (1), (3) and (4) in (5) gives 

                    𝑑𝑊𝜋(𝑡) = 𝜋(𝑡)[(𝛼 + 𝑐𝑎2𝑆2𝛾(𝑡))𝑑𝑡 + 𝑎𝑆𝛾 (𝑡)𝑑𝑍(2)(𝑡)] + [𝑊(𝑡) − 𝜋(𝑡)]𝑟𝑑𝑡 + 

                                               ∅𝑑𝑡 + 𝛽𝑑𝑍(1)(𝑡)                                                                               (6) 

Equation (6) becomes 

𝑑𝑊𝜋(𝑡) = [𝜋(𝑡)𝛼 + 𝜋(𝑡)𝑐𝑎2𝑆2𝛾(𝑡) + 𝑟(𝑊(𝑡) − 𝜋(𝑡)) + ∅]𝑑𝑡 +  

                                                      𝜋(𝑡)𝑎𝑆𝛾(𝑡)𝑑𝑍(2)(𝑡) + 𝛽𝑑𝑍(1)(𝑑𝑡)                                           (7) 
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Applying the assumption that 𝑍(1) and 𝑍(2) are correlated with correlation coefficient 𝜌. The 

quadratic variation of the wealth process is 

                      (𝑑𝑊𝜋(𝑡))
2

= [𝜋2(𝑡)𝑎2(𝑆𝛾(𝑡))
2

+ 2𝜋(𝑡)𝑎𝑆𝛾(𝑡)𝛽𝜌 + 𝛽2] 𝑑𝑡.       (8)  

Therefore, the insurance investor’s problem can be written as 

                        𝑉(𝑇, 𝑊) = sup(𝜋) 𝐸[𝑈(𝑊𝜋(𝑡)]                                                                        (9) 

subject  to (7) ; 

𝑑𝑊𝜋(𝑡) = [𝜋(𝑡)𝛼 + 𝜋(𝑡)𝑐𝑎2𝑆2𝛾(𝑡) + 𝑟(𝑊(𝑡) − 𝜋(𝑡)) + ∅]𝑑𝑡 +  

                                           𝜋(𝑡)𝑎𝑆𝛾(𝑡)𝑑𝑍(2)(𝑡) + 𝛽𝑑𝑍(1)(𝑑𝑡). 

2. The Case of transaction cost 

In this case, it is assumed that transaction cost is charged on the risky asset only.  Therefore 

equation (5) modifies to 

                           𝑑𝑊𝜋(𝑡) = 𝜋(𝑡)(1 − 𝑏(𝑡))
𝑑𝑆(𝑡)

𝑆(𝑡)
+ [𝑊(𝑡) − 𝜋(𝑡)]

𝑑𝐵(𝑡)

𝐵(𝑡)
+ 𝑑𝑅(𝑡)                  (10)                                  

where 𝑏(𝑡) is the rate at which transaction cost is charged. 

Applying (1), (3) and (4) to equation (10) , we get 

                          𝑑𝑊𝜋(𝑡) = 𝜋(𝑡)[1 − 𝑏𝑡][(𝛼 + 𝑐𝑎2𝑆2𝛾(𝑡))𝑑𝑡 + 𝑎𝑆𝛾(𝑡)𝑑𝑍(2)(𝑡)] +  

                                                    [𝑊(𝑡) − 𝜋(𝑡)]𝑟𝑑𝑡 + ∅𝑑𝑡 + 𝛽𝑑𝑍(1)(𝑡),                  (11)  

and we further get 

𝑑𝑊𝜋(𝑡) = [(1 − 𝑏(𝑡))𝜋(𝑡)𝛼 + (1 − 𝑏(𝑡))𝜋(𝑡)𝑐𝑎2𝑆2𝛾(𝑡) + (𝑊(𝑡) − 𝜋(𝑡))𝑟 +  ∅]𝑑𝑡 +

                           (1 − 𝑏(𝑡))𝜋(𝑡)𝑎𝑆𝛾(𝑡)𝑑𝑍(2)(𝑡) + 𝛽𝑑𝑍(1)(𝑡).                                                    (12)  

The quadratic variation of the wealth process given in equation (12),  𝑍(1) and 𝑍(2) being correlated 

with correlation coefficient  𝜌 is 

        (𝑑𝑊𝜋(𝑡))
2

= [(1 − 𝑏(𝑡))
2

𝜋2(𝑡)𝑎2(𝑆𝛾(𝑡))
2

+ 2(1 − 𝑏(𝑡))𝜋(𝑡)𝑎𝑆𝛾(𝑡)𝛽𝜌 +  𝛽2] 𝑑𝑡 . (13)                                                                                                                                                                                   

Therefore, the insurance investor’s problem can be written as 

                       𝑉(𝑡, 𝑊) = sup(𝜋) 𝐸[𝑈(𝑊𝜋(𝑡))]  

subject to (12).  

 

THE OPTIMIZATION 

 

In this section, we find the optimal investment strategies of the insurance investor’s  and examine 

the effects of transaction cost and the correlation of the Brownian motions under logarithmic utility 

preference. To derive the Hamilton-Jacobi Bellman (HJB) partial differential equation, we start 

with the Bellman equation.   

The cases that will be examined are: 

i. when there is no transaction cost and  the Brownian motions do not correlate 

ii. when there is no transaction cost and the Brownian motions correlate. 

 iii. when there is transaction cost and the Brownian motions do not correlate 

iv. when there is transaction cost and the Brownian motions correlate. 
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The Hamilton-Jacobi-Bellman (HJB) equation is  

 𝑉𝑡 + ⌊𝜋(𝑡)𝛼 + 𝜋(𝑡)𝐶𝑎2𝑠2𝛾 + 𝑟(𝑤(𝑡) − 𝜋(𝑡)) + 𝛼⌋𝑉𝑤 + 

                                   [(𝜋(𝑡)𝑎𝑠𝛾(𝑡))
2

+  2𝜋(𝑡)𝑎𝑠𝛾(𝑡)𝛽𝜌𝑑𝑡 + 𝛽2]
1

2
𝑉𝑤𝑤 = 0.                  (14)           

where  𝑉𝑡 and 𝑉𝑤   are first partial derivatives of 𝑉 with respect to 𝑡 and 𝑊 respectively.  𝑉𝑤𝑤  is 

second partial derivative of 𝑉 with respect to 𝑊.                                                                   

We now consider the logarithm preference of the form   

                                          𝑈(𝑊) = 𝑙𝑛 𝑊,                                                                                  (15) 

and let the value function be of the form 

                                         𝑉(𝑊, 𝑇; 𝑡) = 𝑔(𝑡, 𝑇)𝑙𝑛𝑊,                                                                 (16)                              

such that at the terminal time 𝑇                                                               

                                             𝑔(𝑇; 𝑇) = 1.                                                                                  (17)                     

                                         

We obtain from (16) that 

                                      𝑉𝑡 = ln 𝑊𝑔𝑡 , 𝑉𝑤 =
1

𝑤
𝑔 ,   𝑉𝑤𝑤 = −

1

𝑤2 𝑔.                                           (18) 

The application of (16) and (18) in (14) gives 

                     ln 𝑊𝑔𝑡 + [𝜋(𝑡)𝛼 + 𝜋(𝑡)𝐶𝑎2𝑠2𝛾(𝑡) + 𝑟(𝑊(𝑡) − 𝜋(𝑡) + 𝛼]
1

𝑤
𝑔 +

                                     [(𝜋(𝑡))2(𝑎𝑠𝛾(𝑡))2 + 2𝜋(𝑡)𝑎𝑠𝛾𝛽𝜌 + 𝛽2] −
1

𝑊2 𝑔 = 0.                 (19) 

To obtain the optimal value 𝜋∗(𝑡) of 𝜋(𝑡), we differentiate equation (19) with respect to  𝜋(𝑡) and 

evaluate to obtain 

                   
1

𝑊
𝑔[(𝛼 + 𝐶𝑎2𝑠2𝛾(𝑡)) − 𝑟] −

1

2𝑊2 𝑔[2𝜋(𝑡)𝑎2(𝑠𝛾(𝑡))2 + 2𝑎𝑠𝛾𝛽𝜌] = 0.              (20) 

From (20) we obtain the investor’s optimal strategy when there is no transaction cost and the 

Brownian motions correlate as 

                                         𝜋𝑛𝑡𝑐𝑏
∗(𝑡)  =  

𝑤((𝛼+𝐶𝑎2𝑠2𝛾(𝑡))−𝑟)

𝑎2(𝑠𝛾(𝑡))2 −
𝛽𝜌

𝑎(𝑠𝛾(𝑡))
 .                             (21)            

Next, we find the general optimal investment strategy for the investor under logarithm utility 

preference when there is transaction cost the Brownian motions correlate 

We apply equation (12) and (13) in the Ito’s lemma to obtain                       

         𝑑𝑉 =
𝜕𝑉

𝜕𝑡
𝑑𝑡 +

𝜕𝑉

𝜕𝑊
[(𝜋(𝑡)𝛼 + 𝜋(𝑡)𝐶𝑎2𝑠2𝛾(𝑡)) − 𝜋(𝑡)𝑏(𝑡)𝛼 − 𝜋(𝑡)𝑏(𝑡)𝐶𝑎2𝑠2𝛾(𝑡) +

                      𝑤(𝑡) − 𝜋(𝑡)𝑟 + 𝜃]𝑑𝑡 + (1 − 𝑏(𝑡))𝜋(𝑡)𝑎𝑠𝛾(𝑡)𝑑𝑍(2)(𝑡) + 𝛽𝑑𝑍(1)(𝑑𝑡) 

                      +  
1

2

𝜕2𝑉

𝜕𝑊2 [(1 − 𝑏(𝑡))
2

𝜋2(𝑡)𝑎2(𝑠𝛾(𝑡))2 + 2(1 − 𝑏(𝑡))𝜋(𝑡)𝑎𝑠𝛾(𝑡)𝛽𝜌 + 𝛽2]𝑑𝑡.  (22)                                                       

The application of equation (22) to equation (14) we get the HJB equation  

𝑉𝑡 + ⌊(1 − 𝑏(𝑡))𝜋(𝑡)𝛼 + 𝜋(𝑡)𝐶𝑎2𝑠2𝛾(𝑡) − 𝜋(𝑡)𝑏(𝑡)𝐶𝑎2𝑠2𝛾(𝑡) + (𝑤(𝑡) − 𝜋(𝑡))𝑟 + 𝜃⌋𝑉𝑤 

             +[(1 − 𝑏(𝑡))2(𝜋(𝑡))2(𝑎𝑠𝛾(𝑡))2 + 2(1 − 𝑏(𝑡))𝜋(𝑡)𝑎𝑠𝛾(𝑡)𝛽𝜌 + 𝛽2]
1

2
𝑉𝑤𝑤 = 0.      (23) 

Using (15) to (17) in equation (23) we obtain. 
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       ln 𝑤𝑔𝑡 + [(1 − 𝑏(𝑡))𝜋(𝑡)𝛼 + 𝜋(𝑡)𝐶𝑎2𝑠2𝛾(𝑡) − 𝜋(𝑡)𝑏(𝑡)𝐶𝑎2𝑠2𝛾(𝑡) + 𝑟(𝑤(𝑡) − 𝜋(𝑡)) +

𝜃]
1

𝑤
𝑔 −

1

𝑤2 𝑔 [(1 − 𝑏(𝑡))𝜋(𝑡))
2

(𝑎𝑠𝛾(𝑡))2 + 2(1 − 𝑏(𝑡))𝜋(𝑡)𝑎𝑠𝛾(𝑡)𝛽𝜌 + 𝛽2] = 0.            (24)                    

Differentiating equation (24) with respect to  𝜋(𝑡) we get 

                  
1

𝑤
𝑔 [((1 − 𝑏(𝑡))𝛼 + 𝐶𝑎2𝑠2𝛾(𝑡)) − 𝑏(𝑡)𝐶𝑎2𝑠2𝛾(𝑡) − 𝑟] 

           − 
1

2𝑤2 𝑔 [2𝜋(𝑡)(𝛼 − 𝑏(𝑡))
2

𝑎2(𝑠𝛾(𝑡))2 + 2(1 − 𝑏(𝑡))𝑎𝑠𝛾(𝑡)𝛽𝜌] = 0,                         (25)                                               

               

from which on making 𝜋(𝑡) the subject we obtain the investor’s optimal strategy when there is 

transaction cost and correlated Brownian motions as 

                   𝜋𝑡𝑐𝑏
∗(𝑡) =  

𝑤((𝛼+𝐶𝑎2𝑠2𝛾(𝑡)−𝑏(𝑡)𝛼−𝑏(𝑡)𝐶𝑎2𝑠2𝛾(𝑡)−𝑟)

𝑎2(𝛼−𝑏(𝑡))
2

(𝑠𝛾(𝑡))2
−

(1−𝑏(𝑡))𝛽𝜌

𝑎(𝛼−𝑏(𝑡))
2

(𝑠𝛾(𝑡))
.                    (26)                                                                                                       

Now we look at the listed cases thus: 

Case 1: when there is no transaction cost and the Brownian motions do not correlate 

In (26) 

                                               𝜋𝑛𝑡𝑐𝑏
∗(𝑡)  =  

𝑤((𝛼+𝐶𝑎2𝑠2𝛾(𝑡))−𝑟)

𝑎2(𝑠𝛾(𝑡))2 −
𝛽𝜌

𝑎(𝑠𝛾(𝑡))
,  

t if 𝜌 = 0 and there is no transaction cost, the optimal strategy is 

                                               𝜋𝑛𝑡
∗(𝑡)  =  

𝑤((𝛼+𝐶𝑎2𝑠2𝛾(𝑡))−𝑟)

𝑎2(𝑠𝛾(𝑡))2 .                                              (27)  

The optimal investment strategy is a fraction the wealth at hand and depends on horizon. The 

investor remains in business as long as 𝛼 + 𝐶𝑎2𝑠2𝛾(𝑡)) > 𝑟. 

Case 2:  when there is no transaction cost and the Brownian motions correlate. 

In this case the insurance investor’s optimal strategy is as given by equation (21) 

                                         𝜋𝑛𝑡𝑐𝑐𝑏
∗(𝑡)  =  

𝑤((𝛼+𝐶𝑎2𝑠2𝛾(𝑡))−𝑟)

𝑎2(𝑠𝛾(𝑡))2 −
𝛽𝜌

𝑎(𝑠𝛾(𝑡))
. 

Clearly 

                                                 𝜋𝑛𝑡𝑐𝑐𝑏
∗(𝑡)  = 𝜋𝑛𝑐𝑡

∗(𝑡) −
𝛽𝜌

𝑎(𝑠𝛾(𝑡))
.                                        (28) 

This implies that the investor requires fewer funds to invest in the risky asset when the Brownian 

motions have positive correlation. That is, if the Brownian motions increase or decrease together 

the investor will need less funds to be in business than when the Brownian motions do not correlate. 

 If the Brownian motions do not either increase or decrease together the reverse becomes the case 

as shown by: when the correlation Brownian motion is negative, say  𝜌 = −𝜃, then equation (28) 

becomes       

                                                   𝜋𝑛𝑡𝑐𝑐𝑏
∗(𝑡) = 𝜋𝑛𝑡𝑐

∗(𝑡) +
𝛽𝜃

𝑎𝑠𝛾(𝑡)
.                                           (29) 

Case 3:  when there is transaction cost and the Brownian motions do not correlate 

Here we have from equation (26) 

                              𝜋𝑡𝑐𝑐𝑏
∗(𝑡) =  

𝑤((𝛼+𝐶𝑎2𝑠2𝛾(𝑡)−𝑏(𝑡)𝛼−𝑏(𝑡)𝐶𝑎2𝑠2𝛾(𝑡)−𝑟)

𝑎2(𝛼−𝑏(𝑡))
2

(𝑠𝛾(𝑡))2
−

(1−𝑏(𝑡))𝛽𝜌

𝑎(𝛼−𝑏(𝑡))
2

(𝑠𝛾(𝑡))
,  
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that if 𝜌 = 0 there is no correlation of Brownian motions and there is transaction cost, then the 

optimal strategy becomes 

                               𝜋𝑡𝑐
∗(𝑡) =  

𝑤((𝛼+𝐶𝑎2𝑠2𝛾(𝑡)−𝑏(𝑡)𝛼−𝑏(𝑡)𝐶𝑎2𝑠2𝛾(𝑡)−𝑟)

𝑎2(𝛼−𝑏(𝑡))
2

(𝑠𝛾(𝑡))2
.                                     (30)  

It can be seen that 

           𝜋𝑡𝑐𝑐𝑏
∗(𝑡) = 𝜋𝑡𝑐

∗(𝑡) −
(1−𝑏(𝑡))𝛽𝜌

𝑎(𝛼−𝑏(𝑡))
2

(𝑠𝛾(𝑡))
.                                                 (31)                    

Equation (29) shows that the investor requires extra 
(1−𝑏(𝑡))𝛽𝜌

𝑎(𝛼−𝑏(𝑡))
2

(𝑠𝛾(𝑡))
 amount money to invest in the 

risky asset when there is transaction cost and the Brownian motions correlate with positive 

correlation coefficient. That is, if the Brownian motions increase or decrease together the investor 

will need less funds to be in business than when the Brownian motions do not correlate. 

The reverse is the case as shown by: when the correlation Brownian motion is negative (if the 

Brownian motions do not either increase or decrease together), say  𝜌 = −𝜃, then equation (31) 

becomes       

                                             𝜋𝑡𝑐𝑐𝑏
∗(𝑡) = 𝜋𝑡𝑐

∗(𝑡) +
(1−𝑏(𝑡))𝛽𝜃

𝑎(𝛼−𝑏(𝑡))
2

(𝑠𝛾(𝑡))
.                                      (32) 

 

Case 4:  when there is transaction cost and the Brownian motions correlate  

In this case, the general rule holds as in equation (26) 

                           𝜋𝑡𝑐𝑏
∗(𝑡) =  

𝑤((𝛼+𝐶𝑎2𝑠2𝛾(𝑡)−𝑏(𝑡)𝛼−𝑏(𝑡)𝐶𝑎2𝑠2𝛾(𝑡)−𝑟)

𝑎2(𝛼−𝑏(𝑡))
2

(𝑠𝛾(𝑡))2
−

(1−𝑏(𝑡))𝛽𝜌

𝑎(𝛼−𝑏(𝑡))
2

(𝑠𝛾(𝑡))
. 

This the situation when 𝜌 > 0, but when 𝜌 < 0, say  𝜌 = −𝜃, we have 

                    𝜋𝑡𝑐𝑏
∗(𝑡) =  

𝑤((𝛼+𝐶𝑎2𝑠2𝛾(𝑡)−𝑏(𝑡)𝛼−𝑏(𝑡)𝐶𝑎2𝑠2𝛾(𝑡)−𝑟)

𝑎2(𝛼−𝑏(𝑡))
2

(𝑠𝛾(𝑡))2
+

(1−𝑏(𝑡))𝛽𝜃

𝑎(𝛼−𝑏(𝑡))
2

(𝑠𝛾(𝑡))
,                 (33)  

the insurance investor will require more amount of money to invest in the risky asset. 

 

CONCLUSION 

In this research, we take the risk reserve of an insurance company to follow modified constant 

elasticity of variance model to tackle an optimal problem of the company. The investment case 

considered was insurance company that trades two assets; the money market account (bond) 

growing at a rate r and a risky stock with investment behavior in the presence of stochastic cash 

flow or a risk process, continuously in the economy. Our focus was on obtaining investment 

strategies that are optimal in the sense of optimizing the returns of the company; we establish 

among others that the optimized investment in the assets and the optimal value function are 

dependent on horizon and wealth. It is recommended that the managers of the assets of the 

insurance company should take into consideration this horizon dependency when making policy 

decision.  

In this study, we optimize the insurance company’s returns under the logarithm utility function. 

The Hamilton-Jacobi-Bellman (HJB) partial differential equation is used to solve the dynamic 

optimization problem.  
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Recent studies have uncovered several systematic patterns that increase the probability that 

individual investors can select stock portfolio with excess returns. In this study, the problem of 

investors’ portfolio selection through logarithmic utility optimization under modified constant 

elasticity of variance model was dealt with. 

 The characterization of investors’ behavior is central in the optimal portfolio selection decision 

making. The main emphasis here is on how the choice of logarithmic utility preference affects the 

insurance investor’s investment choices. The proportion for optimizing the company’s expected 

return was observed to be a proportion of the investor’s total wealth.  
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