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ABSTRACT 

This work studied the optimal investment strategy for an investor under Modified Constant Elasticity of Variance (M- 

CEV) and Ornstein-Uhenbeck models. The stock price is assumed to be governed by the M-CEV model and the goal 

is to find the optimal investment strategy where the investor has a power utility preference when the Brownian motions 

do not and do correlate. The application of maximum principle of dynamic programming helped us to obtain the 

required Hamilton-Jacobi-Bellman (HJB) equation. The method elimination of variable dependency was applied to 

transform the second order partial differential equation to an ordinary differential equation from which the close form 

solution of the optimal investment strategy was obtained. It is found that the investor’s optimal strategy when the 

Brownian motions correlate is less than the investor’s optimal investment strategy when the Brownian motions do not 

correlate by a fraction of the total wealth.  
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The idea of an “optimal portfolio” comes from the modern portfolio theory (MPT), it is a theory 

on how risk averse investors can construct portfolios to optimize the expected return based on a 

given level of market risk, emphasizing that risk is an inherent part of higher reward. According 

to this theory, it’s possible to construct an efficient frontier of optimal portfolios offering the 

maximum possible expected return for a given level of risk. This theory was pioneered by Harry 

Markowitz in his paper “portfolio selection”, published in 1952 by the Journal of Finance. 

Modern portfolio theory argues that an investment’s risk and return characteristics should not be 

viewed alone, but should be evaluated by how the investment affects the overall portfolio’s risk 

and return. This means that individual investors should determine how much risk they are willing 

to take, allocate or diversify their portfolios according to the results observed. 

An individual investor can determine how much volatility he or she is willing to maintain in his/her 

other portfolio by picking another point which has along the so called efficient frontier. Doing so 

will provide maximum return for the amount of risk that the investor has decided to accept. Of 

course, optimizing a portfolio in practical terms is quite difficult and cannot be done easily. Today, 

there are computer programs and services which are devoted to determining optimal portfolios. 

The way that they accomplish this is by estimating different expected returns thousands of times 

over for each amount of risk. 

 In this work we solved an optimization problem assuming the modified constant elasticity of 

variance (M-CEV) model for the asset’s price and a power utility over the final wealth for a finite 

horizon agent. This model was introduced in Heath and Platen (2002) and is a natural extension of 

the famous CEV model. The model captures the volatility smile effect. That is, it allows non-zero 

probability of the underlying default (M-CEV process can touch zero while GBM is always 

positive) and it is analytically tractable. Also this model is applicable to algorithmic trading 

strategies because M-CEV process has a mean- reversion property for some of the model’s 

parameter. The model obtains a closed form solution in terms of confluent hyper geometric 

functions, which is where two of the three regular singularities merge into an irregular singularity. 

http://www.ecejournals.org/
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 Recently, more researchers study the utility maximization problem using stochastic control 

theory.The choice of the utility function is very important. There are some popular utility functions 

like logarithmic, power and exponential. Obviously, each utility gives a different optimal strategy 

that maximizes expected utility over the terminal wealth. It is well known that the optimal strategy 

in the case or a logarithmic utility does not depend on the time to the end of the investing period 

and the trading rules of an exponential utility investor is not sensitive to the current wealth, Merton 

(1990). In order to capture time and wealth dependencies we choose a power utility. 

The rest of this work is organized as follows; section II reviewed some works done in this field. In 

section III, we introduce of the financial market and the wealth process of the investor and the 

formulation of the investor’s problem. The derivation of the Hamilton-Jacobi-Bellman (HJB) 

equation is presented in section IV. Section concludes the paper with findings after which 

references followed 

REVIEW OF RELATED LITERATURE 

Optimal investment problem of utility maximization can literally be traced back and viewed from 

the pioneer work of Merton (1971). Merton’s model was used to assess the credit risk of a company 

debt. Analyst and investors utilize the Merton model to understand how capable a company is at 

meeting financial obligations, servicing its debt and weighing the general possibility that it will go 

into credit default. This model was later built out by Fischer Black and Myron Scholes to develop 

the Black-Scholes (1973) pricing model. In the Merton’s (1969) classical portfolio optimization 

problem, an investor allocates his wealth between one risk asset and one risk-free asset and chooses 

an optimal consumption rate to maximize total expected discounted utility of consumption. 

Chang et al (2014) studied an asset and liability management problem with stochastic interest rate 

in which interest rate was assumed to follow the affine interest rate model. 

Chang et al (2013) in their work “The optimal investment and consumption decisions under the 

Ho-lee interest rate model” investigates an investment and consumption problem with stochastic 

interest rate, in which interest rate was assumed to follow the Ho-lee model and be correlated with 

stock price and derived optimal strategies for power and logarithmic utility function. 

http://www.ecejournals.org/
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Gao (2009) studied the portfolio problem of a pension fund management in a complete financial 

market with stochastic interest rate. 

Jung et al (2012) “Optimal investment strategies for the HARA utility under the constant elasticity 

of variance model”, gave an explicit expression for the optimal investment strategy, under the 

constant elasticity of variance model, which maximizes the expected HARA utility of the final 

value of the surplus at the maturity time. To do this, the corresponding HJB equation was 

transformed into a linear partial differential equation by applying a Legendre transform and proved 

that the optimal investment strategy corresponding to the HARA utility function converges as to 

the one corresponding to the exponential utility function. 

Ihedioha (2017) “Investor’s Power Utility Optimization with Consumption, Tax, Dividend and 

Transaction Cost under Constant Elasticity of Variance Model” considered an investor’s portfolio 

where consumption, taxes, transaction costs and dividends are in involved, under constant 

elasticity of variance model. The stock price is assumed to be governed by constant elasticity of 

variance model and his goal was to maximize the expected utility of consumption and terminal 

wealth where the investor has a power utility preference. The application of dynamic programming 

principles, specifically the maximum principle helped in obtaining the Hamilton-Jacobi-Bellman 

(HJB) equation for the value function on which elimination of variable dependency was applied 

to obtain the close form solution of the optimal investment and consumption strategies. It was 

found that optimal investment on the risky asset is horizon dependent. 

Wang et al (2014) studied " The CEV Model and Its Application in a Study of Optimal Investment 

Strategy”, in which they used constant elasticity of variance CEV model to describe the price of 

the risky asset. Maximizing the expected utility relating to the Hamilton-Jacobi-Bellman (HJB) 

equation which describes the optimal investment strategies, they obtain a partial differential 

equation. Applying the Legendre transform, the partial differential equation was transformed to a 

dual problem which was used obtain an approximation solution and an optimal investment strategy 

for the exponential utility function. 

http://www.ecejournals.org/
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Ihedioha (2017) studied "Effect of Correlation of Brownian Motions on an Investor’s Optimal 

Investment and Consumption Decision under Ornstein-Uhlenbeck Model" The aim of his work 

was to investigate and give a closed form solution to an investment and consumption decision 

problem where the risk-free asset has a rate of return that is driven by the Ornstein-Uhlenbeck 

Stochastic interest rate of return model. The maximum principle is applied to obtain the HJB 

equation for the value function. Owing to the introduction of the consumption factor and the 

Ornstein-Uhlenbeck Stochastic interest rate of return, the HJB equation derived become more 

difficult to deal with than the one obtained in literature. The non-linear second-order partial 

differential equation was transformed into an ordinary differential equation; specifically, the 

Bernoulli equation, using elimination of dependency on variables which made for the solution 

obtained. 

Wenyuan and Jingtang (2018) “Optimal investment strategies for general utilities under dynamic 

elasticity of variance models” studied the optimal investment strategies under the dynamic 

elasticity of variance (DEV) model which maximize the expected utility of terminal wealth. The 

DEV model is an extension of the constant elasticity of variance model, in which the volatility 

term is a power function of stock prices with the power being a non-parametric time function. It is 

not possible to find the explicit solution to the utility maximization problem under the DEV model. 

In their work, a dual-control Monte-Carlo method is developed to compute the optimal investment 

strategies for a variety of utility functions, including power, non-hyperbolic absolute risk aversion 

and symmetric asymptotic hyperbolic absolute risk aversion utilities. Numerical examples show 

that this dual-control Monte-Carlo method is quite efficient. 

Dmitry Muravey worked on an optimization problem assuming the Modified Constant Elasticity 

of variance (M-CEV) model for the asset’s price and a power utility over the final wealth for   a 

finite horizon agent. This model was introduced in Heath and Platen (2002) and is natural extension 

of the famous CEV mode (see Cox (1975). This model captures the volatility smile effect; allows 

non-zero probability of the underling’s defaults (M-CEV process can touch zero while GBM is 

always positive); and it is analytically tractable. Also this model is applicable to algorithmic 

http://www.ecejournals.org/
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trading strategies because the M-CEV process has mean-reversion property for some of the model's 

parameters. The time-dependent extension of this model can be found in Linetsky and Carr (2006).  

For the M-CEV model we obtain a closed form solution in terms of confluent hyper-geometric 

functions.  

METHODOLOGY 

In this section, we introduce the idea and concept of the modified constant elasticity of variance 

model (M-CEV Model) in risk theory; we will be looking at the effects of the Brownian motion, 

Geometric Brownian motion as the simplest stochastic differential equation, the Constant 

Elasticity of Variance (CEV), the Ornstein-Uhlenbeck model, the two major tools for studying 

optimally controlled systems (Dynamic Programming and the maximum principle) involving the 

Hamiltonian Function with a constant relative risk aversion (CRRA) which in other words is a 

description of an investor who when faced with two investments with a similar expected return 

(but different risk) will rather prefer to go for the one with lower risk which is relative to growth 

objective that may be taken by a prospective investor. 

Brownian Motion  

Brownian motion is physical phenomena in which a quantity is constantly undergoing small, 

random fluctuations; it is also a simple continuous stochastic process that is widely used in physics 

and finance for modeling random behavior that evolves over time. Examples of such behavior are 

the fluctuations in an asset’s price or the random movements of molecule of gas or liquid. 

A standard (One-dimensional) Wiener process (also called Brownian motion) is a stochastic 

process {𝑊(𝑡)}; 𝑡 ≥ 0 indexed by non-negative real numbers t with the following properties. 

i. 𝑊(0) = 0 

ii. With probability 1, the function t → w(t) is continuous in t. 

iii. The process {𝑊(𝑡)}; 𝑡 ≥ 0 has stationary independent increments. 

iv. The increment 𝑊(𝑡 + 𝑠) −𝑊(𝑠) has the normal (0, 𝑡) distribution. 

 (𝜇, 𝜎2) denotes the normal distribution with the expected value µ and 𝜎2. The 

conditions that it has independent increments means that if; 0 ≤ 𝑠1 ≤ 𝑡1 ≤ 𝑠2 ≤ 𝑡2 

http://www.ecejournals.org/
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then 𝑊(𝑡1) −𝑊(𝑠1) 𝑎𝑛𝑑 𝑊(𝑡2) −𝑊(𝑠2) are independent random variables, this is in 

honour of Norbert Wiener. 

Geometric Brownian Motion (GBM) 

Geometric Brownian motion is the simplest stochastic differential equation (SDE) from the SDE 

family. A stochastic process 𝑆(𝑡) is said to follow geometric Brownian motion (GBM) if it satisfies 

the following stochastic differential equation (SDE): 

   𝑑𝑆(𝑡) = 𝜍𝑆(𝑡)𝑑𝑡 + 𝜏𝑆(𝑡)𝑑𝑍(𝑡), 

where 𝑍(𝑡) is a Brownian motion(wiener process), 𝜍 appreciation rate and 𝜏 volatility, are 

constants or with a deterministic component defined by the function 𝜍𝑆(𝑡), the instantaneous drift 

is defined by the function 𝜏𝑆(𝑡), the stochastic differential 𝑑𝑆(𝑡) represents an infinitesimal 

increment. 

In other words, Geometric Brownian motion is a continuous – time stochastic process in which the 

logarithm of the randomly varying quantity follows a Brownian motion with drift. It is paramount 

example of a stochastic process satisfying a stochastic differential equation (SDE), in particular, it 

is used in mathematical finance to model stock prices in the Black – Scholes model. 

Constant Elasticity of Variance (CEV) Model 

In financial mathematics, the CEV model is a stochastic volatility model whose target is to capture 

the leverage effect and the stochastic volatility. This model is widely used in the financial industry 

by most practitioners, especially for modeling equities and commodities. 

The CEV model describes a process which evolves according the following stochastic differential 

equation: 

 𝑑𝑆(𝑡) = 𝑆(𝑡)[𝜑𝑑𝑡 + 𝛿𝑆𝛾(𝑡) + 𝑑𝑍(𝑡)] , 

where 𝑆(𝑡) is  the spot price, t is time and 𝜑 is a parameter characterizing the drift, 𝛿 and γ are 

other  parameters and Z is a Brownian motion (Wiener process). 

The notation “𝑑𝑆(𝑡)” represents a differential. 

The constant parameters 𝜑 and γ satisfy the condition 𝛿 ≥ 0, γ ≥ 0. The parameter γ controls the 

relationship between volatility and price and is the central feature of the model. 

http://www.ecejournals.org/
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When γ < 1 we see the so – called leverage effect, commonly observed in equity markets, where 

the volatility of a stock increases as its price falls. 

Modified Constant Elasticity of Variance (M-CEV) 

This model was introduced in Heath and Platen (2002) and is a natural extension of the famous 

CEV – model (See Cox (1975). We choose this model basically because the model captures the 

volatility smile and skew effect, it also allows non – zero probability of the underlining’s default 

(M-CEV process can n touch zero while GBM is always positive); and it is analytically tractable. 

Also the model is applicable to algorithmic trading strategies because the M-CEV process has 

mean-reversion property for some of the model’s parameters. 

Consider a simple market consisting of a risk-free bond 𝐵(𝑡) and a risky asset (i.e. stock) 𝑆(𝑡). 

The bond and stock prices are driven by SDE: 

 𝑑𝐵(𝑠)  =  𝑟(𝑠)𝐵(𝑠)𝑑(𝑠);         𝐵(𝑡)  =  𝐵 >  0; 

    
𝑑𝑆(𝑠)

𝑆(𝑠)
= [𝑟(𝑠) −  𝑞(𝑠) +  𝜆(𝑆(𝑠);  𝑠)]𝑑𝑠 +  𝜎(𝑆(𝑠);  𝑠)𝑑𝑍(𝑠);      𝑆(𝑡)  =  𝑆 >  0; 

where 𝑍(𝑠) is a standard Wiener process, 𝑟(𝑠) ≥  0,   𝑞(𝑠)  ≥  0, 𝜎(𝑆;  𝑠)  >  0 and 𝜆(𝑆;  𝑡)  ≥  0 

are the time-dependent risk-free interest rate, the time-dependent dividend yield, the time- and 

state- dependent instantaneous stock volatility, and the time- and state- dependent default intensity, 

respectively. The M-CEV model has the following specifications: 

 𝜎(𝑆(𝑠);  𝑠) =  𝑎𝑆𝛾, 𝜆(𝑆;  𝑠) =  𝑏 +  𝑐𝜎2 (𝑆;  𝑠) =  𝑏 𝑐𝑎2 𝑆2𝛾 𝑞(𝑠) = 𝑞, 𝑟(𝑠) =  𝑟 

 𝛼 =  𝑟 −  𝑞 +  𝑏; 

and defined by this corresponded SDE; 

𝑑𝑆(𝑠)

𝑆(𝑠)
= [𝛼 +  𝑐𝑎2𝑆2𝛾]𝑑𝑠 +  𝑎𝑆𝛾𝑑𝑍1

(1)(s) 

Let us mention that Heath and Platen considered model above with 𝑐 =  1. The case of 𝑐 ≠  1 is 

not extension of original M-CEV model because this case can be reduced to the original model by 

a simple change of measure. 

Ornstein – Uhlenbeck Model 

http://www.ecejournals.org/
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The Ornstein – Uhlenbeck process is one of several approaches used to model (with modifications) 

interest rates, exchange rates, currency and commodity prices stochastically. An Ornstein – 

Uhlenbeck process 𝑟(𝑡) satisfies the following stochastic differential equation; 

 𝑑𝑟(𝑡) = 𝜃(𝜇 − 𝑟(𝑡))𝑑𝑡 + 𝜎𝑑𝑍2(𝑡),  

where  𝜃 > 0 𝑎𝑛𝑑  𝜎 > 0 are parameters and  𝑍2(𝑡) denotes the Wiener Process. It is also known 

as the Vasicek model. The parameter µ represents the equilibrium or mean – value supported by 

fundamentals, σ the degree of volatility around it caused by stocks and 𝜃 the rate by which these 

stocks dissipate and the variable reverts towards the mean. 

The Model and the Model Formulation 

Let an investor trade two assets in a financial market, a risky asset (stock) and a risk free asset 

(bond) that has a rate that is dependent on time, then the dynamics of price of the risk-free asset 

denoted by 𝐵(𝑡) is given by 

 𝑑𝐵(𝑡) = 𝑟(𝑡)𝐵(𝑡)𝑑𝑡,                        (1) 

from which we get 

                 
𝑑𝐵(𝑡)

𝐵(𝑡)
= 𝑟(𝑡)𝑑𝑡                                                         (2) 

The risky asset’s price 𝑆(𝑡) at time, 𝑡, is governed by the modified constant elasticity of variance 

(M-CEV) 

                              𝑑𝑆(𝑡) = 𝑆(𝑡)[𝛼 + 𝑐𝑎2𝑆2𝛾(𝑡)]𝑑𝑡 + 𝑎𝑆𝛾(𝑡)𝑑𝑍1(𝑡)],               (3) 

Equation (3) can be written as 

                              
𝑑𝑆(𝑡)

𝑆(𝑡)
= [𝛼 + 𝑐𝑎2𝑆2𝛾(𝑡)]𝑑𝑡 + 𝑎𝑆𝛾(𝑡)𝑑𝑍1(𝑡)],                                       (4) 

where (𝛼 + 𝑐𝑎2𝑆2𝛾(𝑡)) is the drift parameter,  𝑎𝑆𝛾 is the volatile scale parameter, 𝑍1(𝑡) is the 

Brownian motion parameter, 𝛾 is the elasticity parameter of the local volatility, 𝑆(𝑡)  is the prices 

of the risky asset at time, 𝑡. 

Let 𝜋(𝑡) be the amount of money the investor puts in the risky asset at time t, then [𝑊(𝑡) − 𝜋(𝑡)] 

is the money amount he invested in the risk-free asset, where W(t) is the total wealth investment 

http://www.ecejournals.org/
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in both assets. Corresponding to the trading strategy 𝜋(𝑡), the dynamics of the wealth process 

follows the stochastic differential equation (S.D.E): 

                           𝑑𝑊(𝑡) = 𝜋(𝑡)
𝑑𝑆(𝑡)

𝑆(𝑡)
+ [𝑊(𝑡) − 𝜋(𝑡)]

𝑑𝐵(𝑡)

𝐵(𝑡)
 .                                               (5) 

Applying equation (2), (4) to (7) we get 

                             𝑑𝑊(𝑡) = {
[(𝛼 − 𝑟(𝑡))𝜋(𝑡) + 𝑟(𝑡)𝑊(𝑡) + 𝑐𝑎2𝑆2𝛾𝜋(𝑡)]𝑑𝑡

+𝑎𝑆𝛾𝜋(𝑡)𝑑𝑍1(𝑡)
}.                  (6) 

The quadratic variation, <.> , of equation (6) is 

                                < 𝑑𝑊(𝑡) >= 𝑎2𝑆2𝛾(𝑡)𝜋2(𝑡)𝑑𝑡                                         (7) 

where      

                                          
𝑑𝑡. 𝑑𝑡 = 𝑑𝑡. 𝑑𝑍1(𝑡) = 0

𝑑𝑍1(𝑡). 𝑑𝑍1(𝑡) = 𝑑𝑡
                                    (8) 

Suppose the investor has a power utility function 𝑈(𝑊), then the investors problem can be written 

as;  

                             𝐺(𝑊, 𝑡, 𝑇) = 𝑀𝑎𝑥𝜋(𝑡)𝐸[𝑈(𝑊)]                      (9) 

subject to, 

                           𝑑𝑊(𝑡) = {[(𝛼 − 𝑟(𝑡))𝜋(𝑡) + 𝑟(𝑡)𝑊(𝑡) + 𝑐𝑎2𝑆2𝛾𝜋(𝑡)]𝑑𝑡 + 𝑎𝑆𝛾𝜋(𝑡)𝑑𝑍1(𝑡)}.  

THE OPTIMIZATION 

This study assumes that the investor has power utility preference of the form 

                                     𝑈(𝑊(𝑡)) =
𝑊𝑞

𝑞
, 𝑞 ≠ 0,                                                                         (10) 

with coefficient of relative risk aversion given as 

                          𝑅(𝑊(𝑡)) =
𝑊𝑈′′(𝑊)

𝑈′(𝑊)
,                                                                             (11)       

where W(t) is the investor’s wealth at time, 𝑡. 

We consider two cases thus: 

Case 1: When the Brownian motions do not correlate: (That is 𝑬[𝒅𝒁𝟏. 𝒅𝒁𝟐] = 𝟎) 

The derivation of the Hamilton-Jacobi-Bellman partial differential equation starts with the 

Bellman equation: Let investor’s value function be 

http://www.ecejournals.org/


                                     International Journal of Physics and Mathematical Sciences 
                          2020, Vol. 1, Issue 1, pp. 1-16 

                                 Copyright © 2020 ECE Publishers              
             www.ecejournals.org 

 

11 
 

                          𝐺(𝑊, 𝑡, 𝑇) = 𝑀𝑎𝑥𝜋𝐸[𝐺(𝑊
′ , 𝑡, 𝑇)]                     (12)                                                         

where 𝑊′ denote the investor’s wealth process at time 𝑡 + ∆𝑡, then from equation (12) we have 

                                   𝑀𝑎𝑥𝜋𝐸[𝐺(𝑊
′, 𝑡, 𝑇) − 𝐺(𝑊, 𝑡, 𝑇)] = 0                                                 (13)                 

Dividing equation (13) by ∆𝑡 and taking the limit as   ∆𝑡 → 0, we obtain the Bellman equation:  

                             𝑀𝑎𝑥𝜋
1

𝑑𝑡
𝐸[𝑑𝐺] = 0                                                              (14)              

We shall use in (14) the maximum principle which states that 

                  𝑑𝐺 =
𝜕𝐺

𝜕𝑡
𝑑𝑡 +

𝜕𝐺

𝜕𝑠
𝑑𝑠 +

𝜕𝐺

𝜕𝑟
𝑑𝑟 +

𝜕𝐺

𝜕𝑤
𝑑𝑤 +

𝜕2𝐺

𝜕𝑠𝜕𝑤
𝑑𝑠𝑑𝑤 +

𝜕𝐺

𝜕𝑟𝜕𝑤
𝑑𝑟𝑑𝑤 +

𝜕2𝐺

𝜕𝑠𝜕𝑟
𝑑𝑠𝑑𝑟 

                                    +
1

2
[
𝜕2𝐺

𝜕𝑠2
(𝑑𝑠)2 +

𝜕2𝐺

𝜕𝑟2
(𝑑𝑟)2 +

𝜕𝐺

𝜕𝑤2
(𝑑𝑤)2] .                                               (15)                

But 

                

𝑑𝑊(𝑡) = {[(𝛼 − 𝑟(𝑡))𝜋(𝑡) + 𝑟(𝑡)𝑊(𝑡) + 𝑐𝑎2𝑆2𝑟𝜋(𝑡)]𝑑𝑡 + 𝑎𝑆𝛾𝜋(𝑡)𝑑𝑍1(𝑡)}

  𝑑𝑟(𝑡) = 𝜃(𝜇 − 𝑟(𝑡)𝑑𝑡 + 𝜎𝑑𝑍2(𝑡)

𝑑𝑆(𝑡) = {𝑆(𝑡)[(𝛼 + 𝑐𝑎2𝑆2𝛾(𝑡))𝑑𝑡 + 𝑎𝑆𝛾(𝑡)𝑑𝑍1(𝑡)]}

< 𝑑𝑆(𝑡) > = [𝑆(𝑡)[(𝛼 + 𝑐𝑎2𝑆2𝛾(𝑡))𝑑𝑡 + 𝑎𝑆𝛾(𝑡)𝑑𝑍1(𝑡)]
2

= 𝑎2𝑆2(𝛾+1)(𝑡)𝑑𝑡

< 𝑑𝑟(𝑡) > = (𝑑𝑟)2 = 𝜎2𝑑𝑡

< 𝑑𝑊(𝑡) > =   𝑎2𝑆2𝛾(𝑡)𝜋2(𝑡)𝑑𝑡 =   𝑎2𝑆2𝛾𝜋2𝑑𝑡

(𝑑𝑆(𝑡)𝑑𝑊(𝑡)) = 𝑎2𝑆2𝛾(𝑡)𝑆(𝑡)𝜋(𝑡)𝑑𝑡 = 𝑎2𝑆(2𝛾+1)𝜋𝑑𝑡
(𝑑𝑟(𝑡)𝑑𝑊(𝑡)) = 0
(𝑑𝑆(𝑡)𝑑𝑟(𝑡)) = 0 }

 
 
 
 
 

 
 
 
 
 

        (16)                                                                                

where 

                        

                      𝑑𝑡. 𝑑𝑡 = 𝑑𝑡. 𝑑𝑍1 = 𝑑𝑡. 𝑑𝑍2 = 0
              𝑑𝑍1. 𝑑𝑍1 = 𝑑𝑍2. 𝑑𝑍2 = 𝑑𝑡

𝑑𝑍1. 𝑑𝑍2 = 0
}                    (17)                                                            

Substituting (16) into (15) we obtain 

 𝑑𝐺 =
𝜕𝐺

𝜕𝑡
𝑑𝑡 +

𝜕𝐺

𝜕𝑠
{[𝑆(𝛼 + 𝑐𝑎2𝑆2𝛾)𝑑𝑡 + 𝑎𝑆𝛾𝑑𝑍]} +

𝜕𝐺

𝜕𝑟
[𝜃(𝜇 − 𝑟)𝑑𝑡 − 𝜎𝑑𝑍2] +

𝜕𝐺

𝜕𝑤
{[(𝛼 − 𝑟)𝜋 +

               𝑟𝑊 + 𝑐𝑎2𝑆2𝛾𝜋]𝑑𝑡 + 𝑎𝑆𝛾𝜋𝑑𝑍1} +
𝜕2𝐺

𝜕𝑠𝜕𝑤
[𝑎2𝑆(2𝛾+1)𝜋𝑑𝑡] +

𝜕2𝐺

𝜕𝑟𝜕𝑤
[0] +

𝜕2𝐺

𝜕𝑠𝜕𝑟
[0] 

                +
1

2
[
𝜕2𝐺

𝜕𝑆2
(𝑎2𝑆2(𝛾+1)𝑑𝑡) +

𝜕2𝐺

𝜕𝑟2
[𝜎2𝑑𝑡] +

𝜕2𝐺

𝜕𝑤2
(𝑎2𝑆2𝛾𝜋2𝑑𝑡)]                                          (18)  
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Using (18) in (14), we get 

                    𝑀𝑎𝑥𝜋
1

𝑑𝑡
𝐸 {

𝜕𝐺

𝜕𝑡
𝑑𝑡 +

𝜕𝐺

𝜕𝑠
{𝑆[(𝛼 + 𝑐𝑎2𝑆2𝛾)𝑑𝑡 + 𝑎𝑆𝛾𝑑𝑍1]} +

𝜕𝐺

𝜕𝑟
[𝜃(𝑢 − 𝑟)𝑑𝑡 − 𝜎𝑑𝑍2] +

                           
𝜕𝐺

𝜕𝑤
{[(𝛼 − 𝑟)𝜋 + 𝑟𝑊 + 𝑐𝑎2𝑆2𝛾𝜋]𝑑𝑡 + 𝑎𝑆𝛾𝜋𝑑𝑍1} +

𝜕2𝐺

𝜕𝑠𝜕𝑤
(𝑎2𝑆(2𝛾+1)𝜋𝑑𝑡) +

                             
   1

    2
[
𝜕2𝐺

𝜕𝑆2
(𝑎2𝑆2(𝛾+1)𝑑𝑡) +

𝜕2𝐺

𝜕𝑟2
(𝜎2𝑑𝑡) +

𝜕2𝐺

𝜕𝑤2
(𝑎2𝑆2𝛾𝜋2𝑑𝑡)]} = 0                      (19)                              

Rewriting (20), we get; 

𝐺𝑡 + 𝐺𝑠𝑆(𝛼 + 𝐶𝑎
2𝑆2𝛾) + 𝐺𝑟(𝜃(𝑢 − 𝑟)) + 𝐺𝑤(𝛼 − 𝑟)𝜋 + 𝑟𝑊 + 𝑐𝑎2𝑆2𝛾𝜋 +

𝐺𝑠𝑤(𝑎
2𝑆(2𝛾+1)𝜋) + 𝐺𝑠𝑠

𝑎2𝑆2(𝛾+1)

2
+ 𝐺𝑟𝑟

(𝜎2)

2
+ 𝐺𝑤𝑤

(𝑎2𝑆2𝛾𝜋2)

2
= 0   (21)   Where; 

𝐸 [𝑑𝑍1. 𝑑𝑍2] = 0                    (22) 

Differentiating (21) with respect to 𝜋 gives, 

𝐺𝑤[(𝛼 − 𝑟) + 𝑐𝑎
2𝑆2𝛾] + 𝐺𝑠𝑤(𝑎

2𝑆(2𝛾+1)) + 𝐺𝑤𝑤(𝑎
2𝑆2𝛾𝜋) = 0    (23)  

Making 𝜋 the subject of (23),we get  

𝜋 = − [
(𝛼+𝐶𝑎2𝑆2𝛾−𝑟)𝐺𝑤

(𝑎2𝑆2𝛾)𝐺𝑤𝑤
+
(𝑎2𝑆(2𝛾+1))𝐺𝑠𝑤
(𝑎2𝑆2𝛾)𝐺𝑤𝑤

]            (24)                        

Let 𝐺 (𝑡, 𝑠, 𝑟, 𝑤) =
𝑊𝑞

𝑞
ℎ(𝑡, 𝑠, 𝑟)           (25) 

Be a solution to the HJB equation in (21) above, we obtain the following  

𝐺𝑡 =
𝑊𝑞

𝑞
ℎ𝑡 , 𝐺𝑠 =

𝑊𝑞

𝑞
ℎ𝑠 , 𝐺𝑟 =

𝑊𝑞

𝑞
ℎ𝑟 , 𝐺𝑤 = 𝑊𝑞−1 ℎ , 

 𝐺𝑠𝑤 = 𝑊
𝑞−1 ℎ𝑠 , 𝐺𝑟𝑤 = 𝑊𝑞−1 ℎ𝑟 ,  

𝐺𝑠𝑟 = 𝑊
𝑞−1 ℎ𝑟 , 𝐺𝑠𝑠 = 𝑊𝑞−1 ℎ𝑠𝑠 , 𝐺𝑟𝑟 = 𝑊

𝑞−1 ℎ𝑟𝑟 ,    

𝐺𝑤𝑤 = 𝑞 − 1𝑊𝑞−2ℎ.            (26)                

Again applying (25) in (24) and simplifying yields; 

     = − [
(𝛼+𝑐𝑎2𝑆2𝛾−𝑟)𝑊

(𝑎2𝑆2𝛾)(𝑞−1)
+

𝑆𝑊ℎ𝑆

(𝑞−1)ℎ
]         (27) 

To eliminate dependency on S, we let 

 ℎ(𝑡, 𝑟, 𝑠) = 𝑦(𝑡, 𝑟)
𝑆𝑞

𝑞
                       (28) 

Such that at terminal time T, 

http://www.ecejournals.org/


                                     International Journal of Physics and Mathematical Sciences 
                          2020, Vol. 1, Issue 1, pp. 1-16 

                                 Copyright © 2020 ECE Publishers              
             www.ecejournals.org 

 

13 
 

𝑞

𝑠𝑞
= 𝑦(𝑇, 𝑟)                                             (29) 

From (28), we have; 

ℎ𝑠 = 𝑆
𝑞−1𝑦(𝑡, 𝑟),      ℎ𝑟 =

𝑆𝑞

𝑞
𝑦𝑟            (30) 

Using (28) in (27) 

𝜋 = − [
(𝛼+𝑐𝑎2𝑆2𝛾−𝑟)

(𝑞−1)𝑎2𝑆2𝛾
+

𝑞

(𝑞−1)
]𝑊       (31) 

Case 2: When the Brownian motion correlate:(𝑻𝒉𝒂𝒕 𝒊𝒔 𝑬 [𝒅𝒁𝟏. 𝒅𝒁𝟐] = 𝝆𝒅𝒕)  

The equation (17) becomes  

𝑑𝑊(𝑡) = {[(𝛼 − 𝑟(𝑡)𝜋(𝑡) + 𝑟(𝑡)𝑊(𝑡) + 𝑐𝑎2𝑆2𝛾𝜋(𝑡)]𝑑𝑡 + 𝑎𝑆𝛾𝜋(𝑡)𝑑𝑍1(𝑡)}

𝑑𝑟(𝑡) = 𝜃(𝜇 − 𝑟(𝑡))𝑑𝑡 + 𝜎𝑑𝑍2(𝑡)

𝑑𝑆(𝑡) = {𝑆(𝑡)[(𝛼 + 𝑐𝑎2𝑆2𝛾(𝑡)𝑑𝑡 + 𝑎𝑆𝛾(𝑡)𝑑𝑍1(𝑡)

< 𝑑𝑆(𝑡) > = {𝑆(𝑡)[(𝛼 + 𝑐𝑎2𝑆2𝛾(𝑡)𝑑𝑡 + 𝑎𝑆𝛾(𝑡)𝑑𝑍1(𝑡)}
2

= 𝑎2𝑆2(𝛾+1) (𝑡)𝑑𝑡

= 𝑎2𝑆2(𝛾+1) 𝑑𝑡
< 𝑑𝑟(𝑡) > = (𝑑𝑟)2 = 𝜎2𝑑𝑡

< 𝑑𝑊(𝑡) > = 𝑎2𝑆2𝛾(𝑡)𝜋2(𝑡)𝑑𝑡

= 𝑎2𝑆2𝛾𝜋2𝑑𝑡
(𝑑𝑆(𝑡)𝑑𝑊(𝑡)) = 𝑎2𝑆2𝛾(𝑡)𝑆(𝑡)𝜋(𝑡)𝑑𝑡 = 𝑎2𝑆(2𝛾+1)𝜋𝑑𝑡

(𝑑𝑟(𝑡)𝑑𝑊(𝑡)) = 𝜌𝜎𝑎𝑆𝛾𝜋𝑑𝑡

(𝑑𝑆(𝑡)𝑑𝑟(𝑡)) = 𝜌𝜎𝑎𝑆(𝛾+1)𝑑𝑡 }
 
 
 
 
 
 

 
 
 
 
 
 

(32)        

where        

          

𝑑𝑡. 𝑑𝑡 = 𝑑𝑡. 𝑑𝑧1 = 𝑑𝑡. 𝑑𝑧2 = 0
𝑑𝑧1. 𝑑𝑧1 = 𝑑𝑧2. 𝑑𝑧2 = 𝑑𝑡

𝑑𝑧1. 𝑑𝑧2 = 𝜌𝑑𝑡
}                                                (33) 

Again, substituting (32) into (16) we obtain 

𝑑𝐺 =
𝜕𝐺

𝜕𝑡
𝑑𝑡 +

𝜕𝐺

𝜕𝑠
[𝑠(𝛼 + 𝑐𝑎2𝑆2𝛾)𝑑𝑡 + 𝑎𝑆𝛾𝑑𝑧1] +

𝜕𝐺

𝜕𝑟
[𝜃(𝜇 − 𝑟)𝑑𝑡 +  𝜎𝑑𝑧2]

𝜕𝐺

𝜕𝑤
{[(𝛼 − 𝑟(𝑡))𝜋 +

𝑟𝑊 + 𝑐𝑎2𝑆2𝛾𝜋]𝑑𝑡 + 𝑎𝑆𝛾𝜋𝑑𝑧2} +
𝜕2𝐺

𝜕𝑠𝜕𝑤
[𝑎2𝑆(2𝛾+1)𝜋𝑑𝑡] +

𝜕2𝐺

𝜕𝑟𝜕𝑤
[𝜌𝜎𝑎𝑆𝛾𝜋𝑑𝑡] +

𝜕2𝐺

𝜕𝑠𝜕𝑟
[𝜌𝜎𝑎𝑆(𝛾+1)𝜋𝑑𝑡] +

1

2
[
𝜕2𝐺

𝜕𝑆2
[𝑎2𝑆2(𝛾+1)𝑑𝑡] +

𝜕2𝐺

𝜕𝑟2
[𝜎2𝑑𝑡] +

𝜕𝐺

𝜕𝑤2
[𝑎2𝑆2𝛾𝜋2𝑑𝑡]]                  

(34)                                                    
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Using (34) in (15) we obtain; 

 𝑀𝑎𝑥𝜋
1

𝑑𝑡
 𝐸 {

𝜕𝐺

𝜕𝑡
𝑑𝑡 +

𝜕𝐺

𝜕𝑆
[𝑠(𝛼 + 𝑐𝑎𝑆

2𝛾2)𝑑𝑡 + 𝑎𝑆𝛾𝑑𝑧1] +
𝜕𝐺

𝜕𝑟
[𝜃(𝜇 − 𝑟)𝑑𝑡 +  𝜎𝑑𝑧2]

𝑑𝐺

𝑑𝑤
{[(𝛼 −

𝑟]𝜋 + 𝑟𝑊 + 𝑐𝑎2𝑆2𝛾𝜋]𝑑𝑡 + 𝑎𝑆𝛾𝜋𝑑𝑧2} +
𝜕2𝐺

𝜕𝑠𝜕𝑤
[𝑎2𝑆(2𝛾+1)𝜋𝑑𝑡] +

1

2
[
𝜕2𝐺

𝜕𝑆2
[𝑎2𝑆2(𝛾+1)𝑑𝑡] +

𝜕2𝐺

𝜕𝑟2
[𝜎2𝑑𝑡] +

𝜕2𝐺

𝜕𝑤2
[𝑎2𝑆2𝛾𝜋2𝑑𝑡]]} = 0                        

(35)  

We rewrite (35) to obtain 

𝐺𝑡 + 𝐺𝑠[𝑆(𝛼 + 𝑐𝑎
2𝑆2𝛾)] + 𝐺𝑟[𝜃(𝜇 − 𝑟)] + 𝐺𝑤[(𝛼 − 𝑟𝜋 + 𝑟𝑤 + 𝑐𝑎

2𝑆2𝛾𝜋)] +

𝐺𝑠𝑤(𝑎
2𝑆(2𝛾+1)𝜋) + 𝐺𝑟𝑤(𝜌𝜎𝑎𝑆

𝛾𝜋) + 𝐺𝑠𝑟(𝜌𝜎𝑎𝑆
(𝛾+1)) +

𝐺𝑠𝑠𝑎
2𝑆2(𝛾+1)

2
+
𝐺
𝑟𝑟𝜎2

2
+ 𝐺𝑤𝑤

𝑎2𝑆2𝛾𝜋2

2
= 0  

            (36) 

where; 

𝐸 [𝑑𝑍1. 𝑑𝑍2] = 0            (37) 

The differentiation of (36) with respect to 𝜋 gives  

𝐺𝑤(𝛼 − 𝑟) + 𝑐𝑎
2𝑆2𝛾 + 𝐺𝑠𝑤(𝑎

2𝑆(2𝛾+1)) + 𝐺𝑟𝑤(𝜌𝜎𝑎𝑆
𝛾) + 𝐺𝑤𝑤(𝑎

2𝑆2𝛾𝜋) = 0 (38) 

Making 𝜋 the subject of (38) 

𝜋 = − [
[(𝛼−𝑟)+𝑐𝑎2𝑆2𝛾]𝐺𝑤

(𝑎2𝑆2𝛾)𝐺𝑤𝑤
+
(𝜌𝜎𝑎𝑆𝛾)𝐺𝑟𝑤
(𝑎2𝑆2𝛾)𝐺𝑤𝑤

+
(𝑎2𝑆(2𝛾+1))𝐺𝑠𝑤
(𝑎2𝑆2𝛾)𝐺𝑤𝑤

]                             (39) 

Applying (25) in (39)  

𝜋 = − [
(𝛼+𝑐𝑎2𝑆2𝛾−𝑟)𝑊

(𝑞−1)(𝑎2𝑆2𝛾)
+

𝜌𝜎𝑊ℎ𝑟

(𝑞−1)(𝑎𝑆𝛾)ℎ
+

𝑆𝑊ℎ𝑆

(𝑞−1)ℎ
]    (40) 

Again applying (30) to (40), we get; 

𝜋 = − [
(𝛼+𝑐𝑎2𝑆2𝛾−𝑟)𝑊

(𝑞−1)(𝑎2𝑆2𝛾)
+

𝜌𝜎𝑊
𝑆𝑞

𝑞
𝑦𝑟

(𝑞−1)(𝑎𝑆2𝛾)
𝑆𝑞

𝑞
𝑦(𝑡,𝑟)

+
𝑆𝑊𝑆𝑞−1 𝑦(𝑡,𝑟)

(𝑞−1)
𝑆𝑞

𝑞
𝑦(𝑡,𝑟)

]        (41) 

Equation (41) simplifies to  

𝜋 = − [
(𝛼+𝑐𝑎2𝑆2𝛾−𝑟)𝑊

(𝑞−1)𝑎2𝑆2𝛾
+

𝜌𝜎𝑊𝑦𝑟
(𝑞−1)(𝑎𝑆2𝛾)𝑦

+
𝑞𝑊

(𝑞−1)
]                    (42) 
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To eliminate the dependency on r we let 

𝑦(𝑟, 𝑡) =
𝑟𝑞

𝑞
 𝐽(𝑡)                                                             (43) 

Such that at terminal time T, 

𝐽(𝑡) =
𝑞2

(𝑟𝑆)𝑞
                                                                   (44) 

From (43), we get 

𝑦𝑟 = 𝑟𝑞−1 𝐽                                                                   (45) 

Substituting (45) in (42), we obtain 

𝜋 = − [
(𝛼+𝑐𝑎2𝑆2𝛾−𝑟)𝑊

(𝑞−1)(𝑎2𝑆2𝛾)
+

𝜌𝜎𝑊𝑟𝑞−1 𝐽

(𝑞−1)(𝑎𝑆𝛾)
𝑟𝑞

𝑞
  𝐽
+

𝑞𝑊

(𝑞−1)
]              (46) 

Equation (46) simplifies to 

 𝜋𝐶𝑜𝑟 = − [
(𝛼+𝑐𝑎2𝑆2𝛾−𝑟)

(𝑞−1)(𝑎2𝑆2𝛾)
+

𝜌𝜎𝑞

(𝑞−1)𝑎𝑟𝑆𝛾
+

𝑞

(𝑞−1)
]𝑊                      (47) 

Effects of the Correlation of the Brownian Motions  

The optimal investment strategy when the Brownian motions do not correlate is given by; 

𝜋𝑛𝑜 𝐶𝑜𝑟 = − [
(𝛼+𝑐𝑎2𝑆2𝛾−𝑟)

(𝑞−1)𝑎2𝑆2𝛾
+

𝑞

(𝑞−1)
]𝑊                             (48) 

And when the Brownian motions correlate by; 

𝜋𝐶𝑜𝑟 = − [
(𝛼+𝑐𝑎2𝑆2𝛾−𝑟)

(𝑞−1)(𝑎2𝑆2𝛾)
+

𝜌𝜎𝑞

(𝑞−1)𝑎𝑟𝑆𝛾
+

𝑞

(𝑞−1)
]𝑊                   (49) 

Therefore; 

𝜋𝐶𝑜𝑟 = 𝜋𝑛𝑜 𝐶𝑜𝑟 − [
𝜌𝜎𝑞

(𝑞−1)𝑎𝑟𝑆𝛾
]𝑊                                               (50)  

It can be seen from equation (50), that when  𝜌 = 0 , the case of non-correlation of the Brownian 

motions is obtained. 

This study assumes four cases for the correlation of the Brownian motion namely; 

CASE 1:When the correlation is  unity, say  𝜌 = 1  

We obtain  

             𝜋𝐶𝑜𝑟 = 𝜋𝑛𝑜 𝐶𝑜𝑟 − [
𝜎𝑞

(𝑞−1)𝑎𝑟𝑠𝛾
]𝑊     (51) 
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(That is, when  𝜌 = 1, the investor’s  optimal  strategy when the Brownian motions correlate is 

greater than the investor’s optimal investment strategy when the Brownian motions do not 

correlate by a fraction [
𝜎𝑞

(𝑞−1)𝑎𝑟𝑠𝛾
] of the total wealth). 

CASE 2: When the correlation is  negative, say 𝜌 = −𝐾,  

We obtain; 

                𝜋𝐶𝑜𝑟 = 𝜋𝑛𝑜 𝐶𝑜𝑟 + [
𝜎𝑞

(𝑞−1)𝑎𝑟𝑠𝛾
]𝑊                  (52) 

(That is, when  𝜌 = −𝐾, the investor’s optimal investment strategy when the Brownian motions 

correlate is less than the investor’s optimal investment strategy when the Brownian motions do not 

correlate by a fraction [
𝑘𝜎𝑞

(𝑞−1)𝑎𝑟𝑠𝛾
]of the total wealth). 

CASE 3: When the correlation is positive, say 𝜌 = 𝐾, that is;   𝜌 = 𝐾    

We obtain  

𝜋𝐶𝑜𝑟 = 𝜋𝑛𝑜 𝐶𝑜𝑟 − [
𝑘𝜎𝑞

(𝑞−1)𝑎𝑟𝑠𝛾
]𝑊                         (53) 

(That is, when 𝜌 = 𝐾 the investor’s optimal investment strategy when Brownian motions correlate 

is greater than the investor’s optimal investment strategy when the Brownian motions do not 

correlate by a fraction [
𝑘𝜎𝑞

(𝑞−1)𝑎𝑟𝑠𝛾
] of that total wealth). 

CASE 4:When the correlation is equal zero, say  𝜌 = 0 ,  

We obtain; 

                     𝜋𝐶𝑜𝑟 = 𝜋𝑛𝑜 𝐶𝑜𝑟 − [
𝑘𝜎𝑞

(𝑞−1)𝑎𝑟𝑠𝛾
]𝑊      (54) 

                     𝜋𝐶𝑜𝑟 = 𝜋𝑛𝑜 𝐶𝑜𝑟 

(That is, when 𝜌 = 0 the investor’s optimal investment strategy when Brownian motions correlate 

is equal to the investor’s optimal investment strategy when Brownian motions do not correlate). 

CONCLUSION  

This work investigated on investor’s investment strategy problem. The work starts with 

introduction in chapter (1). Chapter (2) various works done in this field the introduction of the 

financial market is done and the wealth process established in chapter (3). It assumed the stock 
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price followed the modified elasticity of variance (M-CEV) model a natural extension of the 

geometric Brownian motion (GBM). In chapter (4) the derivation of the Hamilton-Jacobi-Bellman 

(HJB) is done with the help of the dynamic programming principles specially the maximum 

principle and the conjectures on elimination of variables obtained close-form solutions to the 

optimal preference. Introduction of the unity function and explicit solution of the investor optimal 

strategy problem obtained when the Brownian motions do not correlate and when the Brownian 

motions do not correlate and when the Brownian motions do correlate is seen in this chapter, and 

when studied in four different cases. 

Finally in chapter (5), we conclude that the investor optimal investment strategy when the 

Brownian motions correlate is less than the investor optimal investment strategy when the 

Brownian motions do not correlate by a fraction [
𝜌𝜎𝑞

(𝑞−1)𝑎𝑟𝑠𝛾
]  of the total wealth. 
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